

B Series

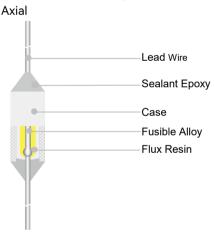
Description

The Direct Current Thermal-Link Alloy Type (DC-ATCO) is defined as a non-resettable protective device functioning one time only. It is widely used in electrical equipment. ATCO is mainly consist of fusible alloy, flux resin, case, sealant and lead wires. Normally, fusible alloy is jointed to the two lead wires. Under abnormal conditions, when the temp. reaches to the fusing temp. of ATCO, the fusible alloy melts and quickly retracts to the two lead wire ends with the aid of the flux resin and disconnects the circuit completely.

SETsafe | SETfuse Direct Current Thermal-Link Alloy Type (DC-ATCO) B series Rated Functioning Temp. from 76 °C to 221 °C, Rated Current: 3 A, safety certification Includes UL, cUL, TUV, PSE, KC, CCC, and complies with RoHS and REACH.

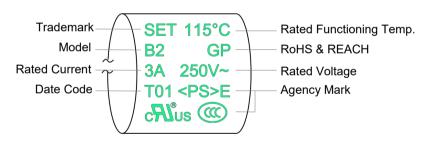
Features

- Non-Resettable
- High Accuracy of Functioning
- RoHS & REACH Compliant

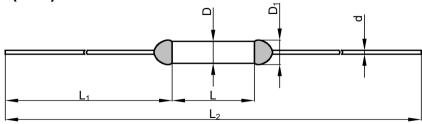

Applications

- Lamps
- Switched-Mode Power Supplies
- Home Electrical Appliances
- Transformers
- Motors
- **Batteries**

Customization


- Other Temp.
- The Length of Lead Wires
- Taping Packing Available
- Lead Wires can be Insulated
- Tinned Copper Wires or CP Wires
- **Leads Forming Types**

Structure Diagrams


Marking

Axial (Color for reference only)

Remark: The first letter of the Date Code Year/quarter A stands for 2000, B stands for 2001, 01 stands for the first quarter, 02 stands for the second quarter, and so on.

Dimensions (mm)

L	L ₁	L ₂	D	D ₁	d
9.0 ± 0.5	35.0 ± 2.0	79.0 ± 3.0	2.5 ± 0.5	≤ 3.0	0.54 ± 0.05

B Series

Specifications

Cilic	•			I	I								
	Model	Fusing Temp.	T_{h}	T _m	I _r	<i>U</i> _r		c 71 8		⟨PS⟩		(W)	RoHS REACH
		(°C)	(°C)	(°C)	(A)	(V) AC 250	UL	cUL	TUV	PSE	KC	CCC	
004	D04	240 + 2	400	250		AC 250	•	•	•	•	0	•	•
221	B31	218 ± 2	188	250	3		•	•	0	•	0	0	
						DC 60	•	•	•	0	0	0	•
005	Doo	199 ± 3	169	250	2	AC 250	0	0	•	•	0	•	•
205	B32	199 ± 3	109	250	3	AC 125	•	•	0	•	0	0	•
						DC 60	•	•	•	0	0	0	•
187	B17	182 ± 3	162	250	3	AC 250	•	•	•	•	•	•	•
						DC 60	•	•	•	0	0	0	•
160	B16	154 ± 2	135	200	3	AC 250	0	0	•	•	0	•	•
						DC 60	0	0	•	0	0	0	•
150	В7	145 ± 2	126	200	3	AC 250	•	•	•	•	•	•	•
						DC 50	•	•	0	0	0	0	•
145	В6	140 ± 2	121	200	3	AC 250	•	•	•	•	•	•	•
						DC 50	•	•	0	0	0	0	•
139	B13	135 ± 2	115	200	3	AC 250	•	•	•	•	•	•	•
						DC 50	•	•	0	0	0	0	•
136	В9	131 ± 2	112	200	3	AC 250	•	•	•	•	•	•	•
						DC 50	•	•	0	0	0	0	•
135	B5	130 ± 2	111	200	3	AC 250	•	•	•	•	•	•	•
						DC 50	•	•	0	0	0	0	•
133	В8	130 ± 2	111	200	3	AC 250	•	•	•	•	•	•	•
						DC 50	•	•	0	0	0	0	•
130	B4	125 ± 2	106	200	3	AC 250 DC 50	•	•	•	•	•	•	•
						AC 250	•	•	0	0	0	0	•
125	В3	121 ± 2	100	200	3	DC 50	•	•	•	•	•	•	•
						AC 250	•	•	•	•	•	0	•
115	B2	111 ± 2	91	200	3	DC 50	•	•	0	0	0	0	
						AC 250		0	•	•	•	•	•
102	B1	98 ± 3	79	200	3	AC 230	•	•		•	0	0	•
102	ы	30 ± 3	75	200		DC 50	•	•	0	0	0	0	•
						AC 250		0	0	•	0	0	
97	B21	93 ± 2	70	200	3	AC 230							•
97	DZ I	95 1 2	70	200	3	DC 50	•	•	0	•	0	0	•
							•	•	0	0	0	0	•
96	B18	81 ± 2	61	200	3	AC 250 AC 125	•	0	0	•	0	0	•
86	DIÖ	UIIZ	ΟI	200	3	DC 50		•					•
						AC 250	•		0	0	0	0	•
76	DO.	73 ± 2	53	200	3		0	0	0	•	•		•
76	В0	1312	55	200	3	AC 125	•	•	0	•	0	0	•
						DC 50	•	•	0	0	0	0	•

Rated Functioning Temp. (Tf) °C

^{1: &}quot;lacktriangle"Means certificated, " \bigcirc "Means non-certificated, RoHS & REACH Compliant .

^{2: &}quot; * "Customizable DC voltage.

B Series

Agency Information

Institution	Standards	The File No. and certification No. obtained by SETsafe SETfuse
\mathcal{A}°	UL 60691	E214712
c FU ®	CAN-CSA-E60691	E214712
	EN 60691	R50259434
PS	J60691	JET2121-32001-2021、JET2121-32001-2022 JET2121-32001-2023、JET2121-32001-2024 JET2121-32001-2025、JET2121-32001-2026 JET2121-32001-2027、JET2121-32001-2028
K	K60691	SU05023-11001、SU05023-11002 SU05023-11003
(W)	GB 9816.1	2020980205000186

Soldering

Hand-Soldering

- 1. Soldering should be carried out according to Table T-1.
- 2. The thermal element of ATCO is fusible alloy with low melting point, which is jointed with ATCO lead wires. Improper soldering operation (too high soldering temp., too long soldering time, too short lead wire etc.) may transfer more heat to the thermal element and ATCO may open in advance.
- 3. When soldering conditions are more severe than those listed in Table T-1, a heat sink fixture should be used between soldering point and ATCO body.
- 4. When soldering, please do not pull / push or twist ATCO body or lead wires.
- 5. After soldering, let it naturally cool for longer than 20 seconds. During cooling, never move the ATCO body or lead wires.

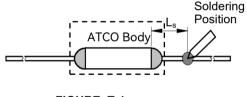
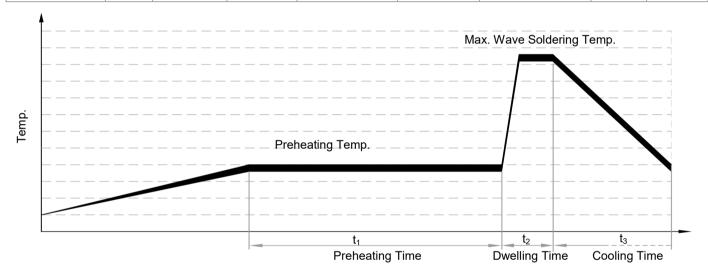


FIGURE T-1

TABLE T-1 Hand-Soldering Time

Rated Functioning Temp.		Max. Allowable Soldering Time for Different Lead Wire Length (Fig.T-1)												
(T _f)	Ls	Time	•	L _s Time		-		Tim	Temp.					
	Length	Tinned Copper Wire	CP Wire	Length	Tinned Copper Wire	CP Wire	Length	Tinned Copper Wire	CP Wire					
(°C)	(mm)	(s)	(s)	(mm)	(s)	(s)	(mm)	(s)	(s)	(°C)				
76 to 101	10	1 ^a	4	20	2	5	30	3	6					
102 to 115	10	1 ^a	4	20	2	5	30	3	6					
116 to 135	10	1 ^a	4	20	3	6	30	5	8	400				
136 to 150	10	3	6	20	5	8	30	5	8					
151 to 221	10	4	7	20	6	9	30	7	10	1				

a: Auxiliary Heat Sink Fixture is Required to Avoid ATCO Cutting off Unexpectedly.

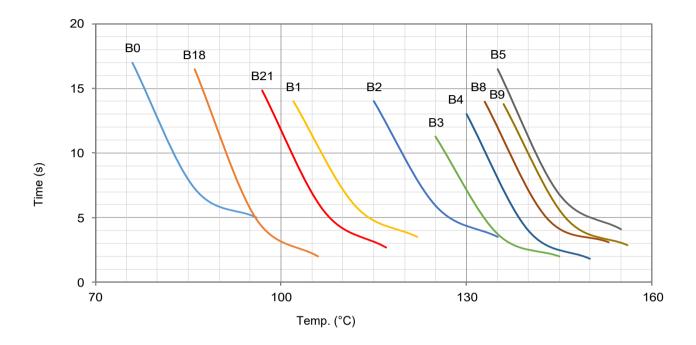

B Series

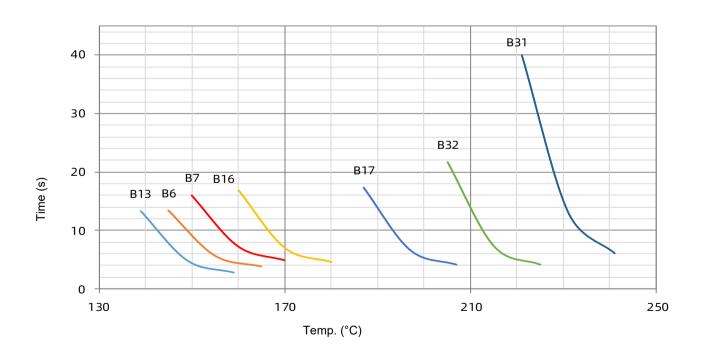
Wave Soldering

The wave soldering parameters as Table T-2, for reference only, when ATCO is for practice use, you need to do some validation experiments. For example, using X-RAY to see the fusible alloy of ATCO whether damage after wave soldering.

TABLE T-2 Wave Soldering Parameters Setting

Rated Functioning Temp.	Who	_		ng Temp. re is Different	Preheating Time (t ₁)	Max. Wave Soldering	Dwelling Time (t ₂)	Cooling Time (t ₃)
(<i>T</i> _f)	L _s Length	Preheating Temp.	L _s Length	Preheating Temp.		Temp.		
(°C)	(mm) (°C)		(mm)	(°C)	(s)	(°C)	(s)	(s)
76 to 130				Recommend	Hand-Soldering			
131 to 150	20 80 30		90	< 60	≤ 260	≤ 3	≤ 10	
151 to 221	20	90	30	100	< 60	≤ 260	≤ 3	≤ 10

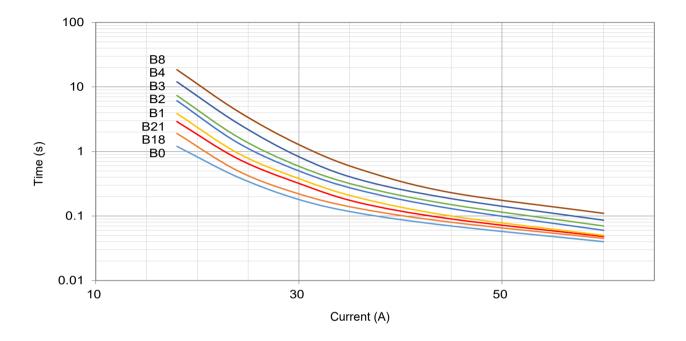


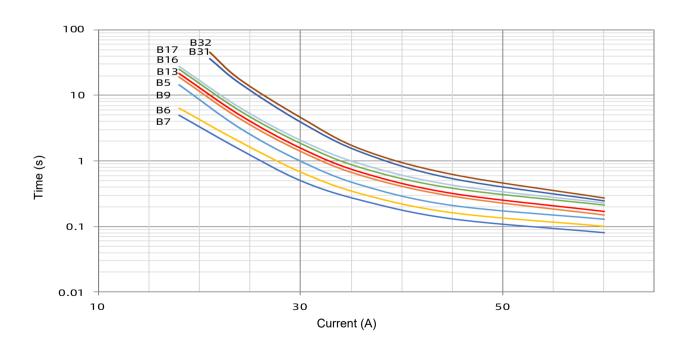


B Series

Product Temp.-Time Curve (Reference)

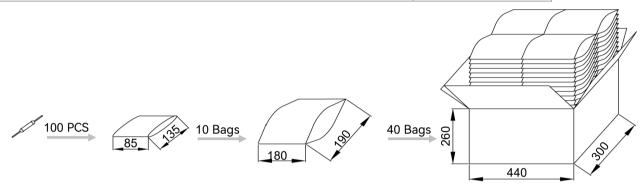
The Temp.-Time Curve of Thermal-Link in different temp. oil bath.





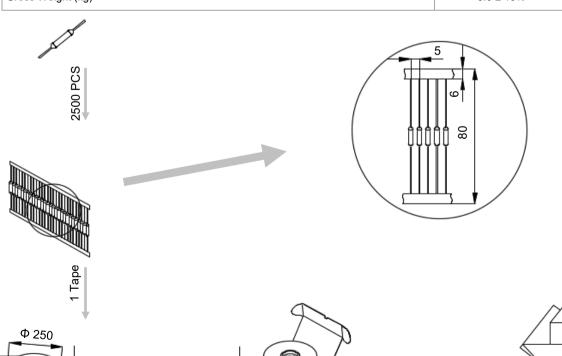
Product Current-Time Curve (Reference)

The Current-Time Curve shows functioning time at multi-times rated current at room temperature 25 ± 2 °C.



B Series

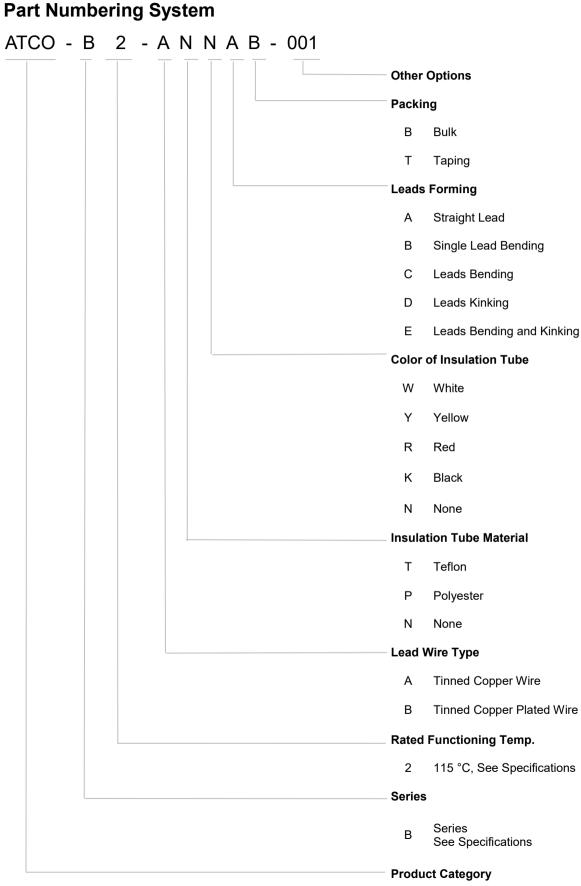
Packaging Information


Bulk

Item	PE Bag	PE Bag	Carton
Dimensions (mm)	135 × 85	190 × 180	440 × 300 × 260
Quantity (PCS)	100	1000	40000
Gross Weight (kg)			15.0 ± 10%

Taping

Item	Scroll	Вох	Carton
Dimensions (mm)	Ф 250 × 94	258 × 258 × 98	480 × 300 × 260
Quantity (PCS)	2500	2500	10000
Gross Weight (kg)			5.6 ± 10%



1 Scroll

440

4 Boxes

B Series

ATCO Alloy Thermal-Link

B Series

Glossary

Item	Description
	Thermal-Link
тсо	A non-resettable device incorporating a THERMAL ELEMENT which will open a circuit once only when exposed for a
100	sufficient length of time to a temperature in excess of that for which it has been designed.
	— (GB 9816.1)
	Alloy Thermal-Link
ATCO	Alloy Type Thermal-Link, Alloy is the thermal element.
	— (GB 9816.1)
	Rated Functioning Temp.
	The temperature of the Alloy Thermal-Link which causes it to change the state of conductivity with a detection current up to
	10 mA as the only load.
T_{f}	
	— (GB 9816.1)
	Tolerance: <i>T</i> _f °C (GB 9816.1, EN 60691, K60691). Tolerance: <i>T</i> _f ± 7 °C (J60691).
	Totalise. 7, ± 7 0 (600001).
	Fusing Temp.
	The temperature of the Alloy Thermal-Link which causes it to change its state of conductivity is measured with silicone oil
Fusing Temp.	bath in which the temperature is increased at the rate of 0.5 °C to 1 °C / minute, with a detection current up to 10 mA as the only load.
	— (GB 9816.1)
	,
	Holding Temp.
\mathcal{T}_{h}	The Maximum temperature at which a Alloy Thermal-Link will not change its state of conductivity when conducting rated current for 168 hours.
	— (GB 9816.1)
	Maximum Temp. Limit
T_{m}	The temperature of the Alloy Thermal-Link stated by the manufacturer, up to which the mechanical and electrical properties of the Alloy Thermal-Link having changed its state of conductivity, will not be impaired for a given time.
	— (GB 9816.1)
	Rated Current
<i>I</i> _r	The current used to classify a Alloy Thermal-Link, which is the Maximum current that Alloy Thermal-Link allows to carry and is able to cut off the circuit safely.
	— (GB 9816.1)
	Rated Voltage
U_{r}	The voltage used to classify a Alloy Thermal-Link, which is the Maximum voltage that Alloy Thermal-Link allows to carry and is able to cut off the circuit safely.
	— (GB 9816.1)
	Nominal Discharge Current
<i>I</i> n	Being able to withstand 15 peak currents of waveform 8/20 µs to test the product's durability of withstanding pulse current.
	— (UL 1449)
	(OL 1449)
	Max. Discharge Current
I _{max}	Being able to withstand 1 peak current of waveform 8/20 µs to test max. pulse current that the product can withstand.

B Series

Usage

- 1. When atmosphere pressure is from 80 kPa to 106 kPa, the related altitude shall be from 2000 meters to 500 meters.
- 2. Operating voltage less than rated voltage of ATCO, operating current less than rated current of ATCO.
- 3. Do not touch the ATCO body or lead wires directly when power is on, to avoid burn or electric shock.

Replace

ATCO is a non-repairable product. For safety sake, it shall be replaced by an equivalent ATCO from the same manufacturer, and mounted in the same way.

Storage

Do not store the ATCO at the high temp., high humidity or corrosive gas environment, avoid influencing the solder-ability of the lead wires, the product shall be used up within 1 year after receiving the goods.

Installation

Make Sure the Temp. of Installation Position.

- 1. It is recommended that a dummy ATCO with inbuilt thermo-couple shall be used to determine the proper temp.
- 2. The terminal product should be tested to ensure that potential abnormal conditions do not cause ambient temp. to exceed the $T_{\rm m}$ of the ATCO.
- 3. Mount the ATCO at the location where temp. rises evenly.

Installation position of mechanical performance requirements.

- 1. Do not locate the ATCO in a place where severe vibration always occurs.
- 2. Ensure that the lead wire is long enough, and avoid actions such as press, tensile or twist.
- 3. The seal or body of ATCO must not be damaged, burned or over heated.

Mechanical Connection

Riveting

- 1. Choose small resistivity riveting material and be riveted.
- 2. A flexible lead or lead with low resistance should be used to rivet the ATCO.
- 3. Contact resistance should be minimal, large contact resistance will lead to higher temp., ATCO Functioning in advance.

Crimping

- 1. Choose small resistivity crimping material and be crimped.
- 2. A flexible lead or lead with low resistance should be used to rivet the ATCO.
- 3. Contact resistance should be minimal, large contact resistance will lead to higher Temp., ATCO Functioning in advance.

Lead Wire Forming

- 1. If lead wire has to be bent, please pay attention to the distance between body and bending point. Refer to Table T-3.
- 2. When bending leads, please use pincher or similar tools to fix the product as shown in Fig.T-2, to avoid damaging the product.
- 3. During forming and mounting, lead wire should not be cut, nicked, bent sharply, to avoid breaking the product.
- 4. Tangential forces on the leads must be avoided (i.e. pushing or pulling on the leads at angle to ATCO body) as such forces may damage the seal of ATCO.

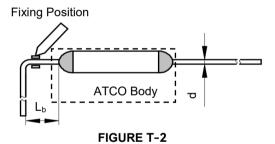
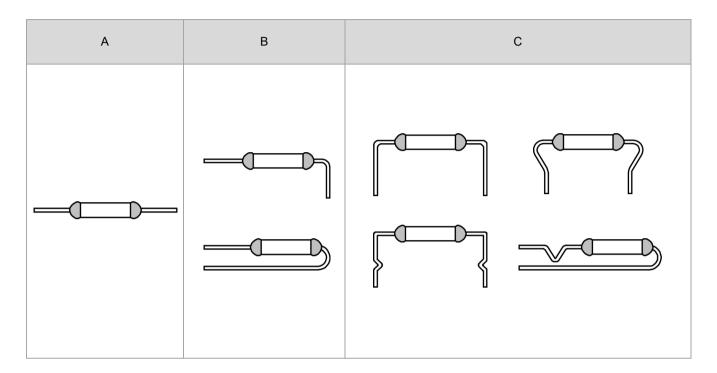


TABLE T-3 Distance between Body and Bending Point


	d	(mm)	< 1.0	1.0 - 1.2	> 1.2
Circular lead	L _b	(mm)	≥ 3	≥5	≥ 10

B Series

Leads Forming TypesThe below leads forming is for reference, more leads forming can be customized.

U _r (VAC Rated Vol Produ Struct	uct	0		<u>O</u>				0	© 		
U _r (VDC Rated Vol	Itage	850	850			5	00	4:	400	_	
r (A) Rated Cur) rrent	15	30	25	15	30	15	15	10	20	Ι
	76	0	0								1
	86	0	0			ARL86-LRA^		TG86C-HQZ^	RQF86-FQS^		
	93	0	0								1
	97	0	ASL 102A-LSF	O	0	ARL 102-LRA	O	1G102C-HQZ**	NQF102-FQ3**	1G102C-JFZ	1
2	105 102	TGH102-HVS^	ASL102A-LSF^	RSK102A-KSS [^]	RVH102-HSF [^]	ARL102-LRA^	RPK102-HRZ^	TG102C-HQZ^	RQF102-FQS^	TG102C-JPZ^	4
<u>re</u>	115	TGH115-HVS [^]	ASL115A-LSF [^]	RSK115A-KSS [^]	RVH115-HSF [^]	ARL115-LRA^	RPK115-HRZ^	TG115C-HQZ^	RQF115-FQS^	TG115C-JPZ^	1
_	120	0	0	0	0	0	0	0	0	0	
5		0	0								
Nated Functioning Temp. (7) 160 150 145 136 136 136 137 125 123 120 115 105 105 103		TGH125-HVS [^]	ASL125A-LSF^	RSK125A-KSS [^]	RVH125-HSF [^]	ARL125-LRA [^]	RPK125-HRZ [^]	TG125C-HQZ [^]	RQF125-FQS [^]	TG125C-JPZ [^]	4
0	130	TGH130-HVS [^]			RVH130-HSF [^]				RQF130-FQS^		
	133	0	0								1
_ ත	135	0	0								
<u> </u>	136	TGH136-HVS [^]	ASL136A-LSF^	RSK136A-KSS [^]	RVH136-HSF [^]	ARL136-LRA^	RPK136-HRZ [^]	TG136C-HQZ [^]	RQF136-FQS^	TG136C-JPZ [^]	
<u></u>	139	0	0								1
٠	145	0	0								ı
Ē	150	TGH150-HVS^	ASL150A-LSF^	RSK150A-KSS^	RVH150-HSF^	ARL150-LRA^	RPK150-HRZ^	TG150C-HQZ^	RQF150-FQS^	TG150C-JPZ^	1
,	160	0	AGE 107A-EGI	0	0	AILL 107-LIVA			0		
	187	TGH187-HVS^	ASL187A-LSF^	RSK187A-KSS^	RVH187-HSF^	ARL187-LRA^			RQF187-FQS^		1
	205 200	0	0								ł
	221	0	0								4
											1

		600			690500IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<th colspan="5"></th>									
				0										
76												25		
86														
93			0											
97														
02	TG102C-JSZ*		0					ALP102-PLZ^	QD102^	PD102^	TD102^	SD102^		
05	0			0					O	0	0	0		
												SD115^		
25	TG125C-JSZ*					HP125^*	HS125^*	ALP125-PLZ^	QD125^	PD125^	TD125^	SD125^		
30			0						QD130^	PD130^	TD130^	SD130^		
33														
35									0					
36												SD136^		
50												SD150^		
60														
87														
00														
05														
	000 000 000 000 000 000 000 000	21	21	21	1	21	21	21	21	21	10	10		

	4														1
	230	0	0	0	0	0	0	0	0	0	0	0	0	ADN230B-NEZ	
	221	0													
	205	0													
	200	0													
O	187	0													
Rated Functioning Temp. ($T_{ m f}$) $^{\circ}$ C	160	0													
7	150	0										S150 [^]	T150^		
	145	0													
μ	139	0													
<u> </u>	136	Q136^*	Q136*	Q136*	P136^*	P136*	P136*	TB136-UHZ [^]	TB136-UJZ*	TS136-RHZ [^]	TS136-RJZ*	S136^	T136^		
D	135	0													Model
Ë	133	0													8
0	130	0						TB130-UHZ [^]	TB130-UJZ*						<u> </u>
<u>5</u>	125	Q125^*			P125^*			TB125-UHZ^	TB125-UJZ*	TS125-RHZ [^]	TS125-RJZ*				
	123	0													
ш	120	0													
eq	115	Q115^*	Q115*	Q115*	P115^*	P115*	P115*	TB115-UHZ [^]	TB115-UJZ*	TS115-RHZ [^]	TS115-RJZ*	S115 [^]	T115^		
gat	105	0													
I.	102	Q102^*			P102^*	P102*	P102*	TB102-UHZ^	TB102-UJZ*	TS102-RHZ [^]	TS102-RJZ*	S102 [^]	T102^		
	97	0													
	93	0													
	86	0													
	76) 0	0	0	0	0	0	0	0	0	0	0	0	0	\longrightarrow
	(A) Current		25			20		20	00	10	00	10	15 16	50	1
Rated	/DC)^ Voltage			12	20 			100	0	100	0	1	00	60	_
U _r (V Rated V	/AC)* Voltage	400	300	250	400	300	250	0	125	0	125		o 	0	
Pro Stru	duct cture								0 0		•				
								Radial Shap	е					Axial Shape	

roduct ructure																							
r (VAC)* ed Voltage	250	0	250			0			250		0		2	50	0	2	50	125		0		250	
red Current (VDC)^ ted Voltage	60																						
/ r (A)		15 10		0	9	8.5	8	6		5		4		3	2.5	2		1	4		3	2	1
76(R18^*		U0^*					0							0					0	X18/**	K18***	F18"
93 86	R18^*		U18^*					C18^							O V18^					F18^	X18^*	K18^*	F18*
97	0																						
102	R1^*		U1^*																	F1^	X1^*	K1^*	F1*
105	0																						
115	R2^*		U2^*				C2^				V2^		SF2^							F2^	X2^*	K2^*	F2*
120	0																						
123	0																						
125	R3^*		U3^*								0		0			H3^*				0	X3^*	K3^*	F3*
130	R4^*		U4^*								V4^		SF4 [^]							F4^	X8* X4*	K8* K4*	F8* F4*
135 133	R5^*		U5^*								0 V8^		SF8^							F8^	X5*	K5*	O E0*
187 160 150 145 139 136 135 133 130 125 123 120 115	0		0									X9^							K9^		X9*	K9*	
139	0	CR13^			M13^	C13^				SF13^	V13^									F13^			F13*
145	R6^*		U6^*	C6^								X6^							K6^	F6^	X6*	K6*	F6*
150	R7^*		U7^*																		X7*	K7*	F7*
160	R16^*		U16^*						C16^*							H16^*	V16^*				X16^*	K16^*	F16*
40=	0																				X17^*	K17^*	
200	0		032						0					0		0	0	0			0	0	
221 205	R31^* R32^*		U31^*						C31^*					B31^* B32^*		H31^*	V31^* V32^*	V31* V32*			X31* X32*	K31* K32*	
004	20110								00111					50444		110444	1.10.111	1 (0 ()			1/0/4	140.44	

	220		0	0	0	0	0	0	0	0	0	0	ADN230B-NDZ^	ADN230B-PDZ^	0	ADN230B-QBZ^	_	
	230 221	O VO24*	KG31*					B31*					ADN230B-NDZ^	ADIN230B-PDZ^	ADN205B-NDZ^	ADN230B-QBZ^		
	205	XG31*				C31*				H31*			0		ADIN205B-NDZ	0	1	
	200	XG32*	KG32*			C33*		B32*		H32*			0			0		
	187	0	0										0			0	1	
ပွ	160	XG16*	KG16*				B16*						0			0		
	150	XG7*	KG7*	C7^	C7*		B7^*		H7^*		V7^*		0			0	1	
	145	XG6*	KG6*	C6^	C6*		B6^*		H6^*		V6^*		0			0		
o.	139	0	O	C13^	C13*		B13^*		H13^*		V13^*		0			0	1	
Ę	136	XG9*	KG9*	C9^	C13		B9^*		H9^*		V13**		0			0		
<u>~</u>	135			C5^	C5*		B5^*		H5^*		V5^*		0			0	ا ا	
DG	133	XG5*	KG5*				B8^*				V8^*		0			0	0	
<u>=</u>	130	XG8* XG4*	KG8* KG4*	C8^ C4^	C8*		B4^*		H8^* H4^*		V8^*		0			0	Model	
Rated Functioning Temp. (7,) °C	125	XG3^*	KG3^*	C3^	C3*		B3^*		0		V3^*		0			0	_	
2	123	763	0	0	0		0				0		0			0	1	
Ē	120		0										0			0		
-	115	XG2^*	KG2^*	C2^	C2*		B2^*		H2^*		V2^*		0			0	1	
te	105	AG2 ⁻	0	0	0		0		0		0		0			0		
Sa	103	XG1^*	KG1^*		C1^*	C1*	B1^*	B1*	H1^*	H1*	V1^*	V1*	0			0	1	
	97	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0		0	C21^*	0	B21^*	0	H21^*	0	V21^*	0			0		
	93	0	0			0		0		0		0	0			0	1	
	86	XG18^*	KG18^*		C18^*	C18*	B18^*	B18*	H18^*	H18*	V18^*	V18*	0			0		
	76	XG0*	KG0*		C0*	0	B0^*	B0*	H0^*	H0*	V0^*	V10*	0			0	1 .	
] r (A	A)	3	2	7			3	ВО		2		1	50	55	50	80	 ;	
	Rated Current U _r (VDC)^ Rated Voltage		60					50	L							24	1	
Rated V													49	4	\8 	24	-	
U _r (V) Rated V	U _r (VAC)* Rated Voltage		50	0	250	125	250	125	250	125	250	125			0			
Product Structure						C	→—()		D	⊐								
		I -	-		Axial Shape													